Surprised? Scientists knew about Greenhouse gases long ago

imgresIt was fascinating to learn that the concept of “global warming” (or cooling) by the presence (or absence) of certain gases in our atmosphere was discovered about two hundred years ago, as discussed in a recent article in Distillations, the magazine of the Chemical Heritage Foundation. This is how scientists came to this knowledge.

Joseph Fourier, best known for his mathematical genius, made calculations to try and determine what set the temperature of the earth. He balanced the energy coming from the sun against the outgoing energy (in infrared form) and concluded that the average earth’s temperature should be around zero degrees Fahrenheit. He didn’t know or understand about the effect of atmospheric gases trapping infrared radiation. Another French scientist, Claude Pouilet speculated that water vapor and carbon dioxide might act to do this. A British scientist, John Tyndall  in 1859 set up an experiment to measure the amount of radiant heat absorbed by various gases. He demonstrated that oxygen, nitrogen and hydrogen are transparent to infrared radiation, while water vapor, carbon dioxide, and methane absorbed such radiation. Tyndall speculated, perhaps concluded, that aqueous water vapor was responsible for the higher-than calculated (by Fourier) earth temperature and therefore created the beneficial climate of our planet.

Several decades later Arrhenius thought about this and continued Fourier’s calculations, now also thinking about carbon dioxide. He recognized that the amount of water vapor in the air varies substantially with the seasons, while the amount of carbon dioxide is relatively constant, though very slowly increasing. He calculated that a doubling of carbon dioxide could increase the earth’s temperature 11-14 degrees F. (This remarkably close to current models which postulate a 5.5 to 9 degrees F  increase for a doubling of CO2) .He also concluded that historical ice ages could have come about due to a large decrease in atmospheric CO2.

Living in a cold climate, Arrhenius did not worry about a possible rise in the earth’s temperature. In fact, he suggested that an increase in atmospheric CO2 would beneficially affect the colder regions of the earth, bringing about more abundant  crops, etc.

So, it seems that the scientific community has long been aware of the effect of Greenhouse gases. But there was more concern about the possibility of another ice age than about the melting of glaciers and the rise of ocean levels. This is now our problem.



Posted in Chemical Industry, Energy Industry | Tagged | Leave a comment

Intelligent textiles: Another technology breakthrough

imagesIn my previous post I discussed how chemical companies are trying to cope with how technology is changing the workplace: the need to train insufficiently skilled/ educated workers to use the automated controls and robotics now increasingly used in plants that must compete in a globalized world. Now a broad-scaled initiative to help the U.S. in creating jobs and develop leadership in technology is starting to make progress in another area: the production of specialized fabrics that weave in tiny ceramic, metal and fiberglass fibers as “semiconductors, LED’s, solar cells and sensors that can see, hear, communicate, store energy, warm or cool a person or monitor a wearer’s health.” Clothes that include sensors and chips will then become another form of “wearable technology”, joining the Apple Watch and fitness monitors.

This is still in its early stages, but is receiving strong support.  MIT, the Department of Defense and a number of textile and other companies are cooperating in a private-public consortium Advanced Functional Fabrics of America (AFFOA) to accelerate innovation in high-tech, U.S.-based manufacturing involving fibers and textiles. The developers state that the fabrics made from these fibers will have the ability to see, hear and sense their surroundings; communicate; store and convert energy; monitor health; control temperature; and change their color. The consortium, with $75 million in Federal funding out of total initial funding of $ 317 million, will focus on developing these new technologies and training the workforce required to operate and maintain these production systems. Two dozen start-up incubators are planned at different locations.

The aim is to create an entire new industry, based on a number of breakthroughs in fiber technology and use in the manufacture of fabrics. With a history of losing textile manufacturing, first to Southern U.S. and then to China and elsewhere, the government of Massachusetts, which is a partner in AFFOA, claims that the consortium will unlock new advances in military technology and support the development of new manufacturing methods, bringing new employment opportunities back to the state.

In an example of how new technology of this kind is already being applied, Inman Mills, a South Caroline company founded in 1901, has successfully transitioned from making shirting and apparel lining – a business lost to overseas competition – to making flame-resistant fabrics, with fibers including silica to fiberglass. The next step is to make these fibers “smart”, leading to the technologies being developed by AFFOA.Smart textilesCredit: Bloomberg Business News


Posted in Chemical Industry, Manufacturing | Tagged , | Leave a comment

Chemical Manufacturing: Worker education a new priority

images First, the good news! The U.S., perhaps surprisingly to some, has now topped China in Manufacturing Competitiveness, according to a Deloitte study. The other news is not necessarily bad, but is worth noting. Jobs in manufacturing have been changing rapidly, as automation has proceeded in almost every industry. And that has created a conundrum: Lots of new jobs have been created, but a large “skills gap” has developed, with close to half of the estimated 3-4 million new jobs being created going unfilled, unless extensive training can be provided.

An article in the May 23rd issue of Chemical & Engineering News discussed what a number of chemical companies are doing to deal with this issue, with help from SOCMA and other agencies. There are basically two problems. First, a number of older workers are retiring, taking with them a great deal of knowledge. Secondly, a substantial part of the pool of potential new workers is sadly lacking in STEM knowledge and skills as needed to operate the increasingly sophisticated controls and machinery being installed in both existing and new plants. And some millenials are hesitant to apply for jobs in industry.

Turning to the chemical industry, SOCMA is offering, free of charge, a worker training curriculum called Chemical Operator Training (COT) that includes some of the necessary math, chemistry and work process skills. This course doesn’t guarantee quality instruction, but is helpful to a number of firms. But some small or Community colleges that offer an associates degree in industrial systems technology are considering grafting COT to this program so that participants can obtain a degree that includes operator training. SOCMA is also working on grafting COT to a course offered by the Manufacturing Skill and Standards Council which offers a certification program called Certified Production Technician, a 160-hour course accredited by the American National Standards Institute. People involved in developing these combined programs are enthusiastic about the potential for a “wholly new career path in manufacturing”, including a degree.

Still, many millenials are not used to or happy about the prospect of working a five day, eight hour job. Manufacturing jobs are often not considered attractive career paths. This may, in part, account for the fact that there were an estimated 600,000 unfilled jobs in 2011!

Studies have shown that people with degrees earn more than those without. So, programs that offer degrees in courses that offer STEM education as part of operator training for chemical jobs may be a real sweet spot, as the U.S, continues to pursue industrial competitiveness.


Posted in Chemical Industry, Manufacturing | Tagged | Leave a comment

U.S. Oil Self-sufficiency: Not all it’s “fracked” up to be

imagesThe recent( $30-45 per barrel) price range of crude oil is likely to last for quite some time if prognosticators are to be believed. This is partly because Iranian oil has come on the market and the Saudis show no sign of giving up market share to their sworn enemy. But it is also because it is now clear that hydraulic fracking of shale for crude oil is uneconomical for most operators  at these price levels, a situation which has already reduced U.S. oil output by about a million barrels a day , with many rigs shutting down. For those who projected the U.S. to become the world’s “swing producer” controlling the price of oil the way OPEC has been doing for a number of decades, it has now become clear that this could only occur if oil prices get back to the        $ 70-80 per barrel range or higher and if Saudi production starts to decline with aging wells. Then, the potentially unlimited amount of U.S. shale-based crude oil – given the country’s prolific shale deposits – could put the U.S. into the driver’s seat. But there is no reason for oil prices to reach a sustained level substantially above the current range unless or until world demand reaches a considerably higher level and other supply sourced start to decline.

Furthermore,  it seems that hydraulic fracturing of shale may not be the panacea that its advocates have promoted ever since the technology started to be widely employed ten years ago. While local opposition to fracking due to ground water contamination, poor remediation practices and noise was more anecdotal than widespread,  bad publicity was prominent and some states, notably New York, have banned fracking altogether. Leakage of gas into the atmosphere during the fracking operation has received increasing attention as methane is a worse Greenhouse gas than carbon dioxide, though strict regulations have been enacted to deal with this problem. Still, the growing move to reduce carbon emissions from all fuel burning (industrial and automotive) has spawned increasing negativism toward fracking as a technology since it facilitates the continued use of hydrocarbon fuels versus renewable energies and has even become an issue in the presidential campaign.

And now the opponents have a new tool to aim at the fracking industry: the very rapid growth of low level earthquakes in Oklahoma, Texas and California.

.Oklahoma quakesAs these graphics show, the number of generally Level 3 and  greater earthquakes in Oklahoma has dramatically risen in the last several years, parallel to the rapid increase in hydraulic shale cracking in that state. Studies at Southern Methodist and University of Texas have shown that the disposal of spent fracking water by pumping into wells thousands of feet down has, in such cases caused earth faults to slip, resulting in small earthquakes. Disposal and injection wells have actually been known to induce seismic activity since the 1960s, but in mostly rare cases. Now there has been good correlation between fracking water disposal wells and earthquake activity in locations like the DFW Airport. The U.S. Geological Survey has said that they can turn earthquakes on and off by injecting liquid into the ground.

What we can say is this:  Hydraulic fracking of shale with horizontal drilling in the U.S. would be an almost unlimited technology to produce crude oil at prices in the $60-100 per barrel range at some point in the future. However, price uncertainty and growing domestic opposition to fracking make this a theoretical option at this time.




Posted in Energy Industry | Tagged , | Leave a comment

Promising Carbon Capture Technology backed by ExxonMobil

imagesTechnology approaches to reduce the amount of carbon dioxide released into the atmosphere from industrial sources – principally hydrocarbon fuel-based power plants- has been evaluated in some of my earlier posts. It is now generally agreed that scrubbing flue gases with alkaline liquids, followed by stripping out the carbon dioxide, is uneconomical, except for the possible case of the Skyonics technology (see post dated June 26, 2014) which makes bicarbonate of soda and hydrochloric acid useful for fracking, but has limited broad-scale application (Small size of bicarbonate market, sale of HCL requires large local market, such as nearby large fracking installations.). I have also covered the approach where power plants do not burn the coal, but make synthesis gas from gasified coal as a technique to produce a concentrated carbon dioxide stream( Kemper lignite-based plant described in post dated January 2nd, 2016).  This technology, which is also being applied in a grassroots Canadian plant( in both cases using large government grants), is now also deemed to be uneconomical due to very high capital investment as well as high operating costs.

But now we come to an entirely new approach to carbon dioxide capture, namely use of a special type of fuel cell, which has recently received a strong vote of confidence from ExxonMobil Research. The concept is very interesting and will be described below. What is not yet clear are the economics for this approach and whether it is truly scaleable.


This fuel cell, as built and commercially used by Fuel Cell Energy, uses a high-temperature molten carbonate salt mixture. Reformed natural gas (i.e. hydrogen) and oxygen are reacted to generate power, producing carbon dioxide and water. In a typical application, the produced carbon dioxide is recycled, but in the carbon capture and sequestration (ccs) mode, the carbon dioxide-steam mixture is chilled to about 40 degrees below zero where carbon dioxide becomes a liquid and is separated and stored underground. The fuel cell then needs to replace the removed carbon dioxide and captures it from the incoming flue gas from the power plant, which substitutes for normally used air pumped into the fuel cell. Importantly, the system can also strip out 70 percent of the smog-producing oxides of nitrogen present in the power plant flue gas(!).

The company has installed relatively conventional fuel cells in fifty or so locations around the world. Now, Fuel Cell Energy wants to hook its ccarbonate cells up to power plants.The concept ( fuel cells with ccs) has been proved out in relatively small scale cells, with  part of the funding from a  $ 2.5MM grant by DOE. Now, a very major scale-up is planned, with more meaningful funds becoming available from ExxonMobil. Vijay Swarup. vice president for research and development at ExxonMobil Research and Engineering says that while commercial application at power plants is years away, the ccs-oriented fuel cell application “could be a game changer.”

Fuel Cell Energy claims that current ccs technologies, such as used at the Kemper plant, nearly double the cost of power. Their approach uses considerably less so-called parasitic power( a term used to identify the percent of the power needed to run the complete system) and therefore provides a strong economic incentive.

Posted in Energy Industry | Tagged | Leave a comment

Silicone wristbands for monitoring exposure to hazardous chemicals

imagesI just came across an article in the current issue of Chemical and Engineering News magazine that caught my interest. A company called MyExposome are making available lightweight silicone wristbands that trap minute amounts of the multitude of chemicals that people are exposed to as they go about their daily activities, both at work and play. According to the article, the silicon polymer matrix “sequesters” and “concentrates” organic compounds with a chemical absorption profile similar to that of human cells. Wearers will return the wristbands to the company, which will extract the chemicals using solvents or chemical desorption mehods, with gas chromatography or mass spectrometers used to identify the chemicals. In the extended study work carried out to date, these have included endocrine-disrupting chemicals, pesticides, PCB’s, frame retarding chemicals and many others. At this time, only qualitative information is obtained, though the company is working on measuring quantitative exposure.Wristband

With a current cost of $1000 per person for groups of 20 or more, this is still a relatively expensive proposition for wearers, though the cost will come down with broad scale use. But I think it is a “breakthrough” invention. As my blog readers probably know by now, I am not very much concerned about the general population being at great risk from exposure to many of the chemicals we have been warned about, even thoug Bill Moyers and others have long discussed the many chemicals that are found in our bloodstream in very small quantities. Over the years, many chemicals have been found to have carcinogenic or other toxicilogial properties, though tests have almost inevitably shown that they are harmful only if exposure is in quantities several orders of magnitude greater than what people are exposed to on a day-to-day basis. But what I am thinking is that these wristbands – particularly if able to measure quantitative exposure- could be a very useful tool if they are worn by people who are, due to their work, potentially or actually exposed to very high levels of certain chemicals (think formaldehyde for construction workers and funeral parlor workers,  pesticides for farmers). This would, on the one hand, provide the same sort of exposure indicators that workers at nuclear power plants or in radiology labs get from wearing Geiger counters and, on the other hand, provide useful data showing that some chemicals need not necessarily be banned, but that workers needing to be exposed to them should have a record of their exposure.  OSHA should follow the results and should then provide guidelines. Where extensive prolonged experience is shown to be harmful, the use of silicone wristbands might become mandatory and the cost borne by the companies and customers involved.

Further, to the extent that pregnant women want to check their exposure to certain chemicals, use of a chemical exposure wristband would provide reassurance to worriers, though their use would probably be deemed unnecessary by their gynecologist. People with compromised immune systems would also benefit from the use of these wristbands.


Posted in Chemical Industry | Tagged | Leave a comment

Young Liberals opposed to Fracking: Look at facts before making judgments

frackingdiagram[1]As the New York State Democratic primary heats up, it has become evident that “fracking” is becoming a political “football”. It’s not surprising that opposition to fracking, in principle, has become an election issue in New York, since Governor Cuomo, strongly supported by the environmental lobby, cravenly banned fracking in this state while its residents enjoyed the benefits of low cost natural gas resulting from fracking in Pennsylvania, West Virginia and several southern states.  Bernie Sanders’ unsurprising opposition to fracking has further energized his young liberal supporters. Unfortunately, they are unable or unwilling to look at the big picture as discussed in today’s op ed article in the New York times. Hilary Clinton has not yet been pulled strongly in this direction – she says that “fracking will/should only be carried out in some areas – and one can only hope that she will stay the course.

Incontrovertibly, fracking has made the United States much more energy-independent than before. It has resulted in substantially lower natural gas and crude oil prices and it has led to switching a number of power plants from coal to natural gas, thus contributing substantially to a decline in carbon dioxide emissions. Adding wind and solar energy to the mix has brought about a further reduction. So, why are some liberals so opposed to fracking?  This generally comes down to three reasons, namely (a) the highly publicized incidents of ground and aquifer contamination by fracking water, (b) the leakage of some methane -a Greenhouse gas – into the atmosphere during the fracking operation and (c) an inherent desire to reduce the use of fossil fuels altogether.

The Obama administration, which is strongly committed to reduction  in GHG emissions, has sensibly committed to fracking, but has recognized the need to regulate the use of this technology to lessen the associated problems of water contamination and methane emission. With respect to the former, evidence shows that the incidents of contamination have always been somewhat anecdotal and are now statistically even lower, as companies have adopted best practices and regulators are closely monitoring  their operations. As to methane emissions, while methane is a worse actor than carbon dioxide, the volume of methane estimated to have been emitted in 2013 is very much less than that of carbon dioxide so that when all GHG emissions in the U.S. that year are compared on a carbon equivalent basis, carbon dioxide emissions dwarf methane emissions, as shown on the graphic.GHG This topic is covered in more detail in a new blog post by IHRDC called “Perspectives on the Oil and Gas business” written by my Chem Systems colleague Marshall Frank.

Fracking has received broad bipartisan support, with Republicans mostly agreeing with the Obama administration’s positive position on fracking, with states deciding on whether to allow fracking and, if so, how it should be further regulated.

If a vote for Sanders is partly based on his opposition to fracking, liberals who have been strong in supporting a science-based conclusion on global warming (GHGas emissions responsible) should here also look at the facts and recognize that banning this technology will unquestionably raise carbon dioxide emissions, as power plants switch back to coal and new coal-based plants will be built to meet the country’s total power requirements.




Posted in Energy Industry | Tagged | Leave a comment